Tonic enhancement of endocannabinoid-mediated retrograde suppression of inhibition by cholinergic interneuron activity in the striatum.

نویسندگان

  • Madoka Narushima
  • Motokazu Uchigashima
  • Masahiro Fukaya
  • Minoru Matsui
  • Toshiya Manabe
  • Kouichi Hashimoto
  • Masahiko Watanabe
  • Masanobu Kano
چکیده

Tonically active cholinergic interneurons in the striatum modulate activities of striatal outputs from medium spiny (MS) neurons and significantly influence overall functions of the basal ganglia. Cellular mechanisms of this modulation are not fully understood. Here we show that ambient acetylcholine (ACh) derived from tonically active cholinergic interneurons constitutively upregulates depolarization-induced release of endocannabinoids from MS neurons. The released endocannabinoids cause transient suppression of inhibitory synaptic inputs to MS neurons through acting retrogradely onto presynaptic CB1 cannabinoid receptors. The effects were mediated by postsynaptic M(1) subtype of muscarinic ACh receptors, because the action of a muscarinic agonist to release endocannabinoids and the enhancement of depolarization-induced endocannabinoid release by ambient ACh were both deficient in M1 knock-out mice and were blocked by postsynaptic infusion of guanosine-5'-O-(2-thiodiphosphate). Suppression of spontaneous firings of cholinergic interneurons by inhibiting Ih current reduced the depolarization-induced release of endocannabinoids. Conversely, elevation of ambient ACh concentration by inhibiting choline esterase significantly enhanced the endocannabinoid release. Paired recording from a cholinergic interneuron and an MS neuron revealed that the activity of single cholinergic neuron could influence endocannabinoid-mediated signaling in neighboring MS neurons. These results clearly indicate that striatal endocannabinoid-mediated modulation is under the control of cholinergic interneuron activity. By immunofluorescent and immunoelectron microscopic examinations, we demonstrated that M1 receptor was densely distributed in perikarya and dendrites of dopamine D1 or D2 receptor-positive MS neurons. Thus, we have disclosed a novel mechanism by which the muscarinic system regulates striatal output and may contribute to motor control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated retrograde signaling and its physiological contribution to synaptic modulation in the striatum.

Endogenous cannabinoids (endocannabinoids) mediate retrograde signals for short- and long-term suppression of transmitter release at synapses of striatal medium spiny (MS) neurons. An endocannabinoid, 2-arachidonoyl-glycerol (2-AG), is synthesized from diacylglycerol (DAG) after membrane depolarization and Gq-coupled receptor activation. To understand 2-AG-mediated retrograde signaling in the s...

متن کامل

Recurrent inhibitory network among striatal cholinergic interneurons.

The striatum plays a central role in sensorimotor learning and action selection. Tonically active cholinergic interneurons in the striatum give rise to dense axonal arborizations and significantly shape striatal output. However, it is not clear how the activity of these neurons is regulated within the striatal microcircuitry. In this study, using rat brain slices, we find that stimulation of in...

متن کامل

Endocannabinoids Mediate Rapid Retrograde Signaling At Interneuron 3 Pyramidal Neuron Synapses of the Neocortex

Trettel, Joseph and Eric S. Levine. Endocannabinoids mediate rapid retrograde signaling at interneuron 3 pyramidal neuron synapses of the neocortex. J Neurophysiol 89: 2334–2338, 2003; 10.1152/jn.01037.2002. In the neocortex, inhibitory interneurons tightly regulate the firing patterns and integrative properties of pyramidal neurons (PNs). The endocannabinoid system of the neocortex may play an...

متن کامل

Presynaptic monoacylglycerol lipase activity determines basal endocannabinoid tone and terminates retrograde endocannabinoid signaling in the hippocampus.

Endocannabinoids function as retrograde messengers and modulate synaptic transmission through presynaptic cannabinoid CB1 receptors. The magnitude and time course of endocannabinoid signaling are thought to depend on the balance between the production and degradation of endocannabinoids. The major endocannabinoid 2-arachidonoylglycerol (2-AG) is hydrolyzed by monoacylglycerol lipase (MGL), whic...

متن کامل

Involvement of HCN Channel in Muscarinic Inhibitory Action on Tonic Firing of Dorsolateral Striatal Cholinergic Interneurons

The striatum is the most prominent nucleus in the basal ganglia and plays an important role in motor movement regulation. The cholinergic interneurons (ChIs) in striatum are involved in the motion regulation by releasing acetylcholine (ACh) and modulating the output of striatal projection neurons. Here, we report that muscarinic ACh receptor (M receptor) agonists, ACh and Oxotremorine (OXO-M), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 3  شماره 

صفحات  -

تاریخ انتشار 2007